Hormonal pleiotropy and the juvenile hormone regulation of Drosophila development and life history

Thomas Flatt,* Meng-Ping Tu, and Marc Tatar

Summary
Understanding how traits are integrated at the organismal level remains a fundamental problem at the interface of developmental and evolutionary biology. Hormones, regulatory signaling molecules that coordinate multiple developmental and physiological processes, are major determinants underlying phenotypic integration. The probably best example for this is the lipid-like juvenile hormone (JH) in insects. Here we review the manifold effects of JH, the most versatile animal hormone, with an emphasis on the fruit fly Drosophila melanogaster, an organism amenable to both genetics and endocrinology. JH affects a remarkable number of processes and traits in Drosophila development and life history, including metamorphosis, behavior, reproduction, diapause, stress resistance and aging. While many molecular details underlying JH signaling remain unknown, we argue that studying “hormonal pleiotropy” offers intriguing insights into phenotypic integration and the mechanisms underlying life history evolution. In particular, we illustrate the role of JH as a key mediator of life history trade-offs.

Introduction
Many traits cannot evolve independently because they are coupled by genetical, developmental and physiological mechanisms. But what exactly are these mechanisms? While connections among traits can be described as genetic correlations and trade-offs caused by pleiotropy or linkage, the detailed physiological and molecular mechanisms mediating such trait correlations have remained elusive.

Traditionally, evolutionary biologists have focussed on quantifying phenotypic integration rather than on understanding the mechanisms underlying trait architecture and trade-offs.

Hormones are regulatory molecules signaling to distant target tissues throughout the organism. They transduce environmental and genetic signals via hormone receptors to affect gene transcription in target tissues, thereby exerting multiple phenotypic effects. Consequently, hormones provide a mechanistic link between the environment, genes and whole organism traits, and the manifold regulatory effects of hormones (‘hormonal pleiotropy’) offer promising insights into phenotypic integration. Hormones are now thought to coordinate the integrated expression of multiple traits across environmental conditions (endocrine-mediated phenotypic plasticity) and to constrain their simultaneous evolution.

Since major parts of development and life history are under endocrine control, hormones and endocrine genes might be major determinants of pleiotropy, life history correlations and trade-offs.

The importance of hormones in the insect life cycle has been recognized early. In 1934, Vincent Wigglesworth (1899–1994) showed that ablation of endocrine glands (the corpora allata, CA) in the bug Rhodnius causes a precocious molt to the adult, whereas re-implantation of CA ensures a juvenile molt. The endocrine factor produced by the CA was named juvenile hormone (JH); its chemical structure was determined by Rölle and colleagues in 1967. Since Wigglesworth’s classical studies, it has become clear that this lipid-like molecule is a major endocrine regulator in insects, representing the probably most versatile animal hormone. Yet, our molecular understanding of JH signaling has remained limited and many developmental and physiological functions of JH still await discovery.
As is the case for the other major insect hormone, 20-hydroxy-ecdysone (20E), progress is likely to come from the fruit fly *Drosophila melanogaster*, a system with extensive genetics, mutant stocks and an array of molecular and physiological tools.\(^{(26–28)}\) Here we review the manifold roles of JH in *Drosophila* development and life history.\(^{(26,28–30)}\) We illustrate that JH has intriguing effects upon traits and trade-offs of major interest to the evolutionary biologist.\(^{(3–16)}\)

Although we focus on the pleiotropic effects of JH on *Drosophila* life history, increasing evidence suggests an important role of hormones in the life history evolution of lizards,\(^{(4–6)}\) birds,\(^{(6–8)}\) insects,\(^{(6,9,11,13,16,20,22–24)}\) echinoderms,\(^{(13,15)}\) and plants.\(^{(13)}\) Comparative endocrinology has made major advances in understanding how endocrine functions evolve and how hormones affect evolutionary processes,\(^{(10,11,13,16,23,29)}\) for a comparative evolutionary perspective on how hormones regulate life history transitions see the recent paper by Heyland et al. in this journal.\(^{(13)}\) By integrating endocrinology into evolutionary biology, as exemplified by the work of Anthony Zera on crickets,\(^{(6,16)}\) the time is ripe for opening the mechanistic black-box of life history, a promising challenge for both developmental and evolutionary biologists.

Life history evolution, trade-offs and hormones

Life history traits are integrated by genetic, physiological and developmental mechanisms, typically measured as genetic correlations.\(^{(1–6)}\) Genetic correlations imply that traits cannot evolve independently: selection on a trait causes correlated responses in other traits.\(^{(1–6)}\) For example, selection experiments often reveal negative genetic correlations between fitness components, so-called trade-offs, that constrain the simultaneous evolution of two or more traits (see Fig. 1).\(^{(1,2)}\)

Life history theory is concerned with explaining the evolutionary diversity of life cycles,\(^{(1,2)}\) yet rarely addresses the mechanisms underlying variation and integration of life history traits.\(^{(3–9,13,14)}\) While genetic correlations are known to be caused by pleiotropy or linkage,\(^{(1–3)}\) the specific genes involved are in most cases unknown. For example, life history theory often assumes the existence of multiple life history effects of a single gene or allele (life history pleiotropy; see Refs. 1–3), yet we have only a handful of examples of loci with pleiotropic effects on fitness components.\(^{(1,31)}\) Even if pleiotropy is common, what are the molecular mechanisms by which pleiotropic genes affect multiple traits?\(^{(3–6,9,31)}\)

Causally understanding genetic correlations requires the identification of specific genetic and physiological mechanisms.\(^{(3–6,31)}\)

Variation in endocrine mechanisms has repeatedly been suggested as a major mechanism underlying life history evolution,\(^{(3–16,20,24)}\) but hormonal aspects of life history evolution have remained understudied. Remarkably, however, hormones commonly play a conserved role in the coordination of life cycles, both among and within species. Life history transitions, for instance from larva to adult or from a non-reproductive to a reproductive state, are typically controlled by hormones,\(^{(10,13)}\) and genetic correlations and trade-offs among life history traits are often hormonally mediated.\(^{(3–8)}\)

For example, the trade-off between flight capability and reproduction in wing-dimorphic crickets, *Gryllus firmus*, is regulated by JH and JH esterase (JHE);\(^{(6,14)}\) the trade-off between egg number and egg size in the side-blotched lizard (*Uta stansburiana*) is mediated by follicle stimulating hormone (FSH);\(^{(4–6)}\) and testosterone affects the trade-off between reproduction and immunity in the dark-eyed junco (*Junco hyemalis*).\(^{(6–8)}\) In particular, endocrine loci may exhibit life history pleiotropy since they affect hormone signaling, the hormone in turn exerting multiple phenotypic effects (‘hormonal pleiotropy’).\(^{(3–8)}\) Variation in endocrine mechanisms may thus be an important substrate for the evolution of coregulated life history traits and trade-offs.\(^{(3–8)}\)

JH is a key mediator of insect development and life history

In insects such as *Drosophila*, JH now emerges as an endocrine regulator of development, life history and fitness trade-offs. JH is a sesquiterpenoid lipid-like hormone secreted by the corpora allata (CA), endocrine glands of the head situated behind the brain (see Fig. 2; Refs. 17,21,23,32). Fig. 2.

Insects produce at least eight forms of JH-like compounds (0, I, II, III, JH3 bisepoxide [JHB3], 4-Methyl-JH, 8’-OH-JH III, 12’-OH-JH III), JH III being the most common type.\(^{(17,21,35)}\) In *Drosophila*, the CA produces two JH’s, JH III and JHB3.\(^{(17,35)}\) While the endocrine function is better understood in the former, the latter appears to be the major product of the mature CA in *Drosophila* (also see Fig. 2; Refs. 17,35). While the molecular details underlying JH action remain poorly understood, JH is known to respond to various internal (e.g. hormonal, genetic) and external (e.g. temperature, nutrition, photoperiod) factors, to regulate and coordinate the expression of entire gene batteries, and to simultaneously affect multiple phenotypes.\(^{(22–24)}\) Remarkably, JH affects a vast array of phenotypic traits and physiological or developmental processes, including preadult development, imaginal disc proliferation, organ looping, metamorphosis, ovarian development, sexual maturation, pheromone production, locomotor and courtship behavior, diapause regulation, migration, various morphological polyphenisms, division of labor in social insects, neuronal architecture, memory, learning, immune function, lifespan and many others.\(^{(6,14,16,17,20–25,28–30,37)}\)

During each particular life cycle stage and in response to internal or environmental signals, JH coregulates the expression of many of these traits or functions. By physiologically mediating pleiotropic gene effects and genotype by environment interactions (phenotypic plasticity), JH might represent a major mechanism underlying life history polymorphisms and
polyphenisms in insects.\(^{(3,6,14,22–24)}\) In particular, genetic variation in JH signaling might be an important determinant of variation in life history strategies.\(^{(3,6,24)}\) As we shall sketch below, the functional versatility of JH is also manifest in Drosophila development and life history.\(^{(28,30)}\) Considering some classical endocrine disorders in Drosophila mutants provides a first glimpse of the remarkable pleiotropy mediated by insect hormones such as JH and 20E.\(^{(28,30,33,34,38–40)}\)

Endocrine-mediated life history syndromes in Drosophila mutants

In the late 1930s, Ernst Hadorn recognized the importance of endocrine effects on Drosophila development by showing that the ring gland is partially homologous to the CA and serves a hormonal function.\(^{(28,33,34)}\) Hadorn studied a mutant of *lethal (2) giant larvae* (*l(2)gl*), now known to be a tumor suppressor gene, and found that the mutant’s developmental arrest and lethality is caused by an endocrine deficiency.\(^{(28,33,34)}\) In *l(2)gl* mutants, the puparium is formed later or not at all; by transplanting different wild-type tissues into mutant larvae, Hadorn found that implantation of a ring gland provides a partial rescue of puparation. The same effect can be achieved by injection of 20E; yet whether *l(2)gl* mutants have altered JH function remains unknown.\(^{(28)}\)

Another endocrine disorder in *Drosophila* is found in a mutant of *mama* (*maternal metaphase arrest*; also known as *adipose* female steriles or female sterile (2) adipose), showing developmental defects that suggest an impairment of endocrine function; a similar syndrome occurs in *fs(2)B* (*female sterile (2) Bridges*).\(^{(28,38,39)}\) While homozygous mutants are externally normal, they show abnormalities in three inner organs: (1) the fat body, which hypertrophies due to excessive fat accumulation, (2) the ovaries, which have a reduced number of oocytes, and (3) the CA, which hypertrophies to an abnormally large size.\(^{(28,38)}\) Hypertrophy of CA and fat body can be rescued by implantation of wild-type ovaries, indicating an endocrine feedback between ovary, fat body and the CA.\(^{(28,38)}\) The endocrine details underlying this life history syndrome have yet to be determined.\(^{(28,38,39)}\)

The Hawaiian *Drosophila mercatorum* provides more direct evidence for a role of JH in development and life history.\(^{(3,40)}\) In this species, the naturally occurring genotype *abnormal abdomen* (aa, also called *underreplication* abnormal abdomen) exhibits increased developmental time, early sexual maturation, increased fecundity and decreased female longevity (Table 1). Since JH is known to affect sexual maturation and egg production, this life history syndrome is thought to be caused by changes in JH signaling.\(^{(3,40)}\) Indeed, aa flies have decreased JHE activity, which presumably leads to an unusually elevated JH titer.\(^{(3,40)}\) More recent evidence now suggests that JH has major pleiotropic effects on the *Drosophila* phenotype, ranging from development to aging (Table 1, Fig. 3).

The role of JH in Drosophila development and metamorphosis

JH probably evolved primarily as a reproductive hormone, but is most well known for its effects on preadult development and metamorphosis.\(^{(11,13,17,21–23,29,30,41–43)}\) Evolutionary modifications of JH signaling have played a key role in the evolution of insect metamorphosis.\(^{(11,13,29,43)}\) In embryos of basal, hemimetabolous insects, JH mediates the transformation from pronymphal to larval stages by suppressing morphogenesis and inducing premature differentiation.\(^{(29)}\) In more derived groups of holometabolous insects, JH has a markedly weaker effect on embryonic growth, development and differentiation. Growth and differentiation of various tissues, typically suppressed by JH in ancestral insects, are no longer inhibited by JH and early-growing imaginal discs are formed.\(^{(29)}\) During evolution, the inhibitory action of JH has thus been shifted from early ontogenetic processes to metamorphosis and, possibly, to the adult stage.\(^{(29)}\)

JH is present throughout late embryonic and larval development and serves a ‘status quo’ function: 20E determines the timing of larval instar molts, while the continued presence of JH ensures that 20E-induced molting leads to another larval stage. JH thus determines whether the insect molts to a larva, pupa or adult. Metamorphosis occurs only
when 20E acts in the absence of JH. (23,30,42) Shortly before metamorphosis, the CA stop producing JH, and hemolymph and target tissues exhibit increased JH degradation. Upon attainment of a critical larval weight and a decline of JH to low levels, prothoracicotropic hormone (PTTH) is released, inducing the secretion of 20E. 20E causes cessation of feeding, onset of wandering and pupation; after the pupal molt, 20E is released again and causes the adult molt in the absence of JH. (23,30,42) In many insects, experimentally induced excess of JH during larval development delays metamorphosis, whereas withdrawal leads to precocious metamorphosis. (23) In Drosophila, treatment with exogenous JH does not prevent larval–pupal transformation, (130) but prolongs developmental time, disrupts metamorphosis of the nervous and muscular system, disturbs abdominal differentiation and even inhibits eclosion. (41,44) After initiating metamorphosis, JH titers increase again to regulate developmental details of metamorphosis; for example, JH seems to be required for the final stages of histolysis of the larval fat body. (23,30,45)

JH and 20E also affect imaginal disc proliferation and differentiation, (29,30,37,46,47) and recent evidence suggests a role of JH in organ development. (48) In 1943, Bodenstein demonstrated that Drosophila imaginal discs continue to grow when transplanted into adult abdomens, but only if larval ring glands are co-transplanted. (46,47) Subsequent experiments with Drosophila cell lines and lepidopteran and Drosophila imaginal discs indicate that 20E stimulates proliferation and initiates differentiation, whereas high levels of JH combined with low levels of 20E inhibit proliferation and differentiation. (29,30,37,46) In the spin mutant of Fasciclin2 (Fas2), looping of the genitalia and spermiduct is incomplete and genitalia are under-rotated, suggesting that Fas2 controls organ...
Table 1. Overview of life history effects of JH in Drosophila

<table>
<thead>
<tr>
<th>Genotype</th>
<th>JH phenotype</th>
<th>Development</th>
<th>Sexual maturity</th>
<th>Early fecundity</th>
<th>Lifespan</th>
<th>Effect of JH application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type D. melanogaster (Refs. 30, 41, 54, 59, 86; Flatt and Kawecki, unpublished)</td>
<td>Normal JH levels</td>
<td>Decline of JH in the presence of 20E induces metamorphosis</td>
<td>JH promotes sexual maturation</td>
<td>JH promotes vitellogenesis, ovary maturation, and egg production</td>
<td>JH suppresses stress responses, innate immunity, and lifespan</td>
<td>Prolongs developmental time, decreases body size at eclosion, increases fecundity, suppresses stress resistance and lifespan</td>
</tr>
<tr>
<td>Wild-type D. melanogaster in diapause (Refs. 70–72)</td>
<td>JH downregulated in response to cool temperatures and short days decreased JH esterase presumably increased</td>
<td>JH titer</td>
<td>— —</td>
<td>Ovarian arrest</td>
<td>Extended</td>
<td>Restores fertility; decreases lifespan to nondiapause levels</td>
</tr>
<tr>
<td>Abnormal abdomen (aa) in Drosophila mercatorum (Ref. 40)</td>
<td>Insensitive to JH, gene encodes JH receptor or binding protein</td>
<td>Normal?</td>
<td>Delayed</td>
<td>Decreased</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Insulin-like Receptor (InR) mutants (Refs. 77, 83)</td>
<td>JH deficient; gene probably involved in JH synthesis</td>
<td>Prolonged</td>
<td>Precocious</td>
<td>Increased</td>
<td>Decreased</td>
<td>—</td>
</tr>
<tr>
<td>Methoprene-tolerant (Met) mutants (Refs. 51, 99, 109, 112)</td>
<td>Methoprene has no effect on fat body synthesis of YP in these females. (59) A role of JH in vitellogenesis might also be presumed through its effect on JH, egg deposition while simultaneously reducing female receptivity. (53)</td>
<td>Prolonged</td>
<td>Sterile</td>
<td>Extended</td>
<td>Restores fertility; decreases lifespan to wild-type levels</td>
<td></td>
</tr>
</tbody>
</table>

JH exhibits "pleiotropic" effects upon fly life history. In particular, JH stimulates reproduction, while decreasing lifespan, suggesting that JH is a key mediator of the trade-off between reproduction and survival. The effects of application of JH refer to treating mutant or wild-type flies with the synthetic JH methoprene. For further information see text, the indicated references, or http://flybase.bio.indiana.edu, a database providing information on the Drosophila genome.
This is consistent with the finding that provision of poor food to females at eclosion prevents the increase in vitellogenic-stage follicles and ovarian 20E synthesis, yet methoprene treatment elicits a transient burst of 20E synthesis and restores oocyte production. However, JH and 20E do not always cooperate in promoting egg development. 20E can act as an antagonist of early vitellogenic oocyte development. While 20E application induces nurse cell apoptosis in stage 9 egg chambers, simultaneous methoprene application protects vitellogenic oocytes from the 20E-induced resorption, indicating that JH and 20E act antagonistically to control whether oocytes will progress or undergo apoptosis.

The role of JH in egg development is also manifest in two JH-inducible genes, Jhl-21 and minidiscs (mdn), whose expression during oogenesis is JH-dependent. Both gene products are expressed in ovarian nurse cells and sequestered into mature eggs; methoprene induces expression of both genes and accumulation of their gene products in the ovaries. In JH-deficient ap mutants, levels of mdn and Jhl-21 are strongly reduced, but methoprene treatment rescues this defect. mdn and Jhl-21 encode amino acid transporters and amino acid availability might be critical for egg development.

JH mediates reproductive diapause
In response to stressful environmental conditions, adult insects can enter a state of reproductive diapause (also called quiescence or dormancy), characterized by (1) reduced metabolism, (2) arrested oogenesis, mating and egg production, (3) increased stress resistance, and (4) enhanced survival. Interestingly, in butterflies (Danaus plexippus) and several species of grasshoppers and Drosophila, traits specific to reproductive diapause (arrested oogenesis, stress resistance, negligible senescence) are controlled by JH. For example, diapausing Drosophila females have downregulated JH synthesis, exhibit ovarian arrest and show reduced age-specific mortality as compared to synchronously started cohorts of non-diapausing females. This diapause phenotype can be rescued by methoprene, which terminates ovarian arrest, increases sensitivity to oxidative stress and reduces post-diapause longevity (Table 1).

Reproductive dormancy may however not be exclusively regulated by JH. While treating diapausing females with JHIII or JHB3 restores vitellogenesis, warming flies from 11 °C to 25 °C also terminates diapause and results in an increase of ecdysteroid, but not JH synthesis. More importantly, 20E application can also elicit vitellogenesis in diapausing flies.
suggesting that both 20E and JH affect diapause termination.65,66 Reproductive diapause is an example of adaptive, hormonally mediated life history plasticity. Since JH regulates both fecundity and longevity in a phenotypically plastic and antagonistic way, JH might be an important mediator of senescence plasticity and the trade-off between reproduction and longevity (see Table 1, Fig. 3 and Refs. 70,71,73).

JH is a pro-aging hormone downstream of insulin signaling

Insulin signaling is of major importance for regulating energy metabolism, growth, reproduction and longevity in \textit{Caenorhabditis elegans}, rodents and \textit{Drosophila} (Fig. 4; Refs. 73–82). In response to environmental or internal stimuli, \textit{Drosophila} produces several insulin-like peptides (DILPs, encoded by \textit{dilp}1–7) in median neurosecretory cells (insulin producing cells, IPCs) of the pars intercerebralis of the brain. DILPs are secreted into the protocerebrum, at the corpora cardiaca and into the hemolymph and then bind to the insulin-like receptor (INR) at target tissues, including the gonads and the fat body.74–76 Female flies mutant for \textit{InR} are dwarf, have immature ovaries, are stress-resistant and are extremely long-lived.77 Strikingly, diapausing \textit{Drosophila} also show ovarian arrest, increased longevity and improved stress resistance, suggesting that diapausing flies ‘phenocopy’ \textit{InR} mutant phenotypes.70,71,73,76,77

Remarkably, for both diapausing \textit{Drosophila} and reduced insulin signaling mutants, survival and reproduction in the fly is proximately regulated by JH, apparently a secondary hormone downstream of insulin signaling (see Fig. 4 and Table 1).70,73,76,77,83 Several \textit{InR} mutant genotypes are deficient in JH biosynthesis,76,77,83 and, while \textit{InR} mutant females are infertile with nonvitellogenic ovaries, egg development can be restored by methoprene application.77
Methoprene treatment of long-lived and JH-deficient dwarf females also restores life expectancy towards that of wild type, suggesting that JH has lifespan-shortening effects. Similarly, mutants of the insulin receptor substrate chico are long-lived, sterile dwarfs and exhibit JH synthesis deficiency (Ref. 83 but also see Ref. 85, Table 1). The notion that JH is a pro-aging hormone is also supported by the observation that surgical removal of the CA extends lifespan in grasshoppers and butterflies (discussed in Ref. 70).

While nematodes lack a recognizable JH and the secondary pro-aging hormones in worm insulin signaling are unknown, both diapause and lifespan are controlled by insulin signaling in C. elegans. Worms with mutations in daf-2 (dauerformation), the C. elegans homolog of InR, can bypass dauer diapause (a nonfeeding, stress resistant larval state) and exhibit extended adult lifespan. The regulation of life history (growth, diapause, reproduction, lifespan) by insulin-like signals and downstream hormones thus seems to be evolutionarily conserved (see Fig. 4; Refs. 70,71,73,76,77).

JH suppresses stress resistance and immunity
In many organisms, aging is accompanied by decreased stress resistance and immune function. Remarkably, JH not only has pro-aging effects, but also suppresses stress resistance and innate immunity. In methoprene treatment of female D. melanogaster increases the number of vitellogenic oocytes, while decreasing resistance to oxidative stress and starvation resistance. In the mealworm beetle, the levels of phenoloxidase (PO), an antimicrobial agent, is reduced by mating and application of the JH inhibitor fluavastatin increases immune function. Similarly, the trade-off between immune function (PO levels) and sexual advertisement (pheromone production) is mediated by JH in this species. Whether JH regulates immunity in Drosophila requires formal study—preliminary results from our laboratory suggest that JH functions to suppress expression of genes involved in defense and stress response, including several antimicrobial peptides (see Ref. 73 and unpublished observations). By increasing reproduction at the expense of stress resistance, immunity and longevity, JH may thus be an important proximate mechanism underlying evolutionary trade-offs between reproductive and survival functions (Table 1, Figs. 3, 4).

JH modulates neuroanatomy and behavior
Insect hormones such as JH and 20E also affect neuroanatomy, behavior, learning and memory. In crickets (Acheta domesticus), JH promotes neuroblast proliferation in the mushroom bodies, brain structures important for learning and memory. In honeybees (Apis mellifera), JH treatment has profoundly positive effects on the maturation of short-term olfactory memory. JH-treated bees show very good 1-hour short-term associative memory and perform consistently better than untreated individuals for at least their first week of life.

In Drosophila, our knowledge of neuronal and behavioral hormonal effects is much more limited. While 20E in Drosophila is known to alter mushroom body and axonal growth, nerve terminal development and the function of the neuromuscular junction, the neurodevelopmental effects of JH have not received much attention. A direct neuronal role of JH comes from experiments applying JH analogs. Methoprene treatment at metamorphosis disrupts a fly’s neuroanatomy and pyriproxyfen treatment of prepupae and pupae alters the shape and complexity of the adult dendritic tree of sensory neurons in a time-dependent manner.

The behavior of the fly, in particular its courtship and mating behavior, is also affected by JH. For example, Manning in 1966 implanted CA–CC complexes into pharate adult females and found that this causes females to become precociously receptive to courting males, approximately 24 hours earlier than normal. In JH-deficient apterous mutants, females exhibit abnormally reduced receptivity to courting males. Receptivity positively correlates with JH production among 17 ap genotypes, suggesting that low JH reduces receptivity. Similarly, JH affects the reproductive behavior in the Caribbean fruit fly (Anastrepha suspensa): mated 7-day-old males produce three times more JH than 7-day-old virgin males; topical JH or methoprene application enhances sexual signaling, pheromone release and mating at an earlier age as compared to control males. Another example comes from sexually dimorphic locmotory behavior in Drosophila, controlled by a few neurons in the pars intercerebralis. Male locomotor behavior can be feminized by transplanting a few specific pars intercerebralis neurons from a female into a receiving male. Remarkably, this feminization can be mimicked by feeding males with the JH inhibitor fluavastatin; the effect is reversible by simultaneous application of methoprene, suggesting the control of the behavior by JH.

The elusive nature of the JH receptor
While the search for a JH receptor has yielded very limited results, as recently discussed by Wheeler and Nijhout in this journal, we have two interesting candidate genes for the receptor. The Drosophila nuclear hormone receptor gene ultraspireacle (usp) encodes a retinoid X receptor and JH is closely related to retinoic acid. Interestingly, USP instead binds JH and forms a heterodimer with the ecdysone receptor (ECR). USP is an essential component of ECR since it is required for ECR activity in vivo for instance, both ECR and USP are required for regulating the timing and progression of ovarian differentiation during metamorphosis. Interestingly,
JH has now been reported to act as a USP ligand suppressing 20E-dependent ECR transactivation. However, USP does not fulfill the criterion of high-affinity hormone binding typically required for a hormone receptor.

Another candidate for the JH receptor is the X-linked gene Methoprene-tolerant (Met; also called Resistance to Juvenile Hormone, Rest(1)JH), a member of the basic helix–loop–helix (bHLH-PAS) family of transcriptional regulators. Mutations at Met confer resistance to JH- or methoprene-induced lethality and external morphogenetic abnormalities and alter JH reception during late larval development. The fat body cytosol of mutants has a 10-fold lower binding affinity for JH III than wild type, and a new study reports that MET directly and specifically binds JH III (as well as other JHs and methoprene) with high binding affinity. Although MET does not belong to the nuclear hormone receptor family, it is thought to transduce JH signals. MET may function as a JH-dependent transcription factor since JH can activate the expression of a reporter gene fused to MET in a transient transfection assay using Drosophila S2 cells. In addition, Met affects a number of life history traits, perhaps supporting the notion that MET is a JH receptor (Table 1; Refs. 51,99,109,112). However, some tissues showing MET expression are not known JH targets and Met null mutants show no apparent defects in embryogenesis or larval development, as one would expect if MET is a JH receptor.

Since both USP and MET are somewhat problematic candidates for the JH receptor, it remains possible that the JH receptor does not fit classical models of hormone receptor function. Indeed, several lines of evidence indicate that JH function through membrane (rather than nuclear) receptors and protein kinase C (PKC) signaling. Clearly, the elusive nature of the JH receptor limits our current understanding of JH signaling and its role in life history evolution.

Evolutionary modifications of hormone signaling
How might evolution alter developmental outcomes and life history through evolutionary changes in endocrine mechanisms? And how can the remarkable life history variation among insects be reconciled with the employment of the same major hormone? During evolutionary time, the same hormones have often been functionally co-opted multiple times. For example, while JH has many evolutionarily conserved functions, the details of JH function can be remarkably variable among species, as is the case for reproduction. Evolutionary modifications of the hormone response may be facilitated by its modular structure. Not all tissues or cells are hormone-responsive, for example when they do not express the appropriate hormone receptor and different responsive tissues or cells may have different hormone sensitivities. In particular, hormone responses may be both spatially and temporally heterogeneous, for instance due to variation in tissue- and cell-specific patterns of hormone receptor expression. Evidence for evolutionary variation in hormone receptor expression is now available for the case of the EcR/Usp complex in the ovaries of gall midges (discussed in Refs. 13 and 16) and is suggested by a study of Met in Drosophila.

Conclusions
Here we have illustrated that JH is a remarkably versatile molecule with major effects on various aspects of development and life history in Drosophila and other insects, including many components of Darwinian fitness. In particular, we have reviewed evidence suggesting that JH is an important mediator of life history trade-offs, not only in Drosophila, but also in grasshoppers, butterflies and beetles. Although the effects of JH signaling can vary greatly among species (e.g. Refs. 16,22,23,29) JH typically has negative effects on stress resistance, immune function and lifespan, yet exerts positive effects on reproduction. This suggests that the life history effects of JH may be evolutionarily conserved among insect species.

Life history variation caused by genetic polymorphisms (e.g. as seen in insulin signaling mutants) or phenotypic plasticity (e.g. as seen in diapausing insects) may involve the same endocrine mechanisms. In the case of reproductive diapause and senescence plasticity, insects use JH to coordinate and trade off, the expression of ‘reproductive functions’ versus ‘survival functions’ in response to environmental cues. Remarkably, this phenotypically plastic diapause syndrome is constitutively recapitulated in JH-deficient insulin signaling mutants and JH is now known to be a downstream effector of insulin signaling affecting both reproduction and lifespan. Since hormones such as JH affect multiple traits (hormonal pleiotropy), endocrine loci (e.g. InR, Met) may thus exhibit a remarkable degree of genetic pleiotropy. This functional versatility may be caused by alleles with different effects on endocrine signaling (e.g. as seen for different alleles of InR or Met), with a given hormone affecting multiple physiological and developmental aspects of the phenotype. Hormonal loci are thus promising candidate genes underlying life history and its phenotypic integration, and environmental or genetic variation in endocrine signaling might be an important substrate for life history evolution.

As advocated by Heyland et al. in a recent issue of BioEssays, hormones in development and evolution deserve increased attention from evolutionary biologists. While there has not yet been sufficient interdisciplinary crosstalk, the combined study of endocrinology, developmental genetics, and evolutionary biology promises to yield fascinating insights into the development, functional architecture, and evolution of complex phenotypes. In particular, we are now able, using the tools of genetics and endocrinology, to open the black-box of life history evolution and fill it with mechanism.
References

Li H, Cooper RL. 2001. Effects of the ecdysoneless mutant on synaptic efficacy and structure at the neuromuscular junction in Drosophila.

